
Visual Characterization of
I/O System Behavior

for High-End Computing

Kwan-Liu Ma (PI), Chris Muelder (UC Davis)

Kamil Iskra, Pete Beckman (CI UChicago/ANL)



2

Contents

 Motivation
 Plan
 Data Gathering
 Visualization
 Conclusion



3

HEC Complexity: Hardware



4

HEC Complexity: Software



5

Understanding Performance Behavior of HEC Systems

 Lots of research on application performance analysis and 
debugging tools:
– Jumpshot, ParaGraph, Vampir, TAU

 The needs of system software developers often overlooked:
– impossible to effectively tune the OS without
– high degress of efficiency unattainable by applications



6

Plan

We will develop software infrastructure to provide end-to-end 
analysis and visualization of I/O system software.

Develop/improve/deploy:

 end-to-end, scalable tracing integrated into the I/O system (MPI-IO, 
I/O forwarding, file systems),

 new visual representations and analysis techniques for inspecting 
traces and extracting knowledge, scalable to very large systems 
and integrable with existing techniques.



7

Data Gathering

Capture data:

 at HEC scales,
 from all layers of the I/O software stack,
 correlated to allow associating operations between layers,
 including information on failures and performance anomalies,
 using a general model applicable across a range of systems.



8

Large Scale Tracing

Adopt successful techniques from the field rather than build new ones,
focus on gaps in existing tools:

 HPCT-IO, IOT,
 TAU,
 Sandia's lightweight tracing in SYSIO,
 MPE.

Initial aim:
 gather logs of full-scale application runs performed on Intrepid 

(Argonne's 557 TF BG/P)



9

Comprehensive Data Gathering

Cover all layers of the I/O software stack:

 a high-level I/O library,
 POSIX and MPI-IO (PMPI),
 I/O forwarding,
 filesystem clients and servers,
 hardware?



10

End-to-End Capture of Behavior

Correlate data obtained from individual components at different layers 
into a coherent whole.

 augment all components from the previous slide to enable the 
correlation between layers,

 API/protocol extensions required.

We want to be able to match operations on I/O servers back to the 
application I/O call that initiated them.



11

Visualization

Create the information visualization algorithms and applications 
necessary to provide insight into I/O system behavior under a wide 
variety of workloads.

 interactive drill-down techniques,
 visual space design for multidimensional linking,
 metric design for data filtering and abstraction,
 application-driven strategies.



12

Interactive Drill-Down Techniques

Given the scale, any visual analysis tool needs to provide summary 
information and the ability to see detailed data in context.

 multi-scale visualization approach,
 intuitive visualization interface,
 study I/O strategies in a high-dimensional optimization space.

Visualize various information aggregations at different levels of detail 
in a multidimensional space by choosing from a collection of visual 
transformations.



13

Preliminary Work



14

Preliminary Work



15

Visual Space Design

Provide insight into correlating patterns by presenting information from 
multiple levels of I/O communication in a coherent and linked manner:

 communication paths and system topology,
 bottlenecks in intermediate layers,
 file access patterns on I/O servers,
 tracking the flow of data.



16

Metric Design

Even on relatively small systems log data is in XX GB range.

We will seek to mine collected data that is too large before 
visualization.

 standalone metrics measured on individual 
server/process/connection (load, bandwidth, etc),

 graph theory based (bipartite degree centrality, etc),
 clustering based (two-mode clustering, distance based clustering).



17

Conclusion

This project has not started yet.

Expected outcomes:
 provide more thorough understanding of unexpected storage 

system behavior (bottlenecks, etc),
 enable more effective performance debugging through the 

pinpointing of specific underperforming storage components,
 improve the understanding of the mapping of application data 

structures to the storage ones, and its impact.



18

(this slide intentionally left blank)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

